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DUAL CHANNEL FFT ANALYSIS (PART I) 

by 

H. Herlufsen, (M.Sc.) 

ABSTRACT 
The first part of this article introduces basic dual channel FFT measurements. The 
physical interpretation of the Cross Spectrum, which is the fundamental function 
in these measurements, and the Coherence Function are dealt with in some detail. 
Two different methods for estimating the complex Frequency Response Function 
of a system, from the input and the output signals, are derived, and it is shown 
which of the two estimates, H1(f) and H2(f), should be used in different practical 
measurement situations. 
Various excitation techniques for system analysis are described and their advan- 
tages and disadvantages for specific applications outlined. A number of practical 
measurements, using the Brüel & Kjær Dual Channel Signal Analyzer Type 
2032/2034, are presented to illustrate the function estimates obtained with the 
different techniques. 
Part 2 of this article deals with the applications of the time domain functions, 
Hilbert Transform and Sound Intensity. 

SOMMAIRE 
La première partie de cet article intoduit les mesures de base en analyse FFT 
deux voies. L'interprétation physique de I'interspectre, qui est une fonction 
fondamentale dans ces mesures, et la fonction de coherence sont traités avec 
une certaine profondeur. Deux méthodes différentes pour I'estimation de la 
réponse en fréquence complexe d'un système, à partir des signaux d'entrée, sont 
dérivées, et I'on montre quelle estimation de H1(f) ou H2(f) doit être utilisée dans 
les différentes situations pratiques de mesure. 
Diverses techniques d'excitation pour I'analyse des systèmes sont décrites en 
soulignant leurs avantages et inconvénients dans des applications particulières. 
Plusieurs mesures pratiques, effectuées à I'aide de I'Analyseur FFT à deux voies 
Type 2032 ou 2034, sont présentées pour illustrer les estimations de fonctions 
obtenues avec les différentes techniques. 
La deuxième partie de cet article traite des applications des fonctions temporel- 
les, de la transformée de Hilbert et de l'intensité acoustique. 

3 



 

ZUSAMMENFASSUNG 
Der erste Teil dieses Artikels führt in die Grundlagen von 2-Kanal-FFT-Messungen 
ein. Die physikalische Interpretation des Kreuzspektrums und der Koherenzfunk- 
tion werden in einigen Einzelheiten beschrieben. Zwei verschiedene Methoden zur 
Bestimmung des komplexen Frequenzgangs aus den Ein- und Ausgangssignalen 
eines Systems werden genannt und welcher — H1(f) and H2(f) in bestimmten 
praktischen Meßsituationen angewendet werden sollte. 
Verschiedene Anregungstechniken für die Systemanalyse sowie ihre Vor- und 
Nachteile für spezielle Anwendungen werden diskutiert. Es werden mehrere Mes- 
sungen unter Verwendung des Brüel&Kjær Zweikanal-Signalanalysators 2032 und 
2034 dargelegt, um die erreichten Näherungen mit den verschiedenen Techniken 
zu illustrieren. 
Der zweite Teil wird Anwendungen von Zeitbereichfunktionen, der Hilbert-Trans- 
formation und der Schallintensität umfassen. 

1. Introduction 
The main objective in system analysis is to measure input - output 
relationships. A dual channel FFT analysis of the input and output of a 
system (Fig.1) permits calculation of a function which describes its 
dynamic behaviour, assuming the system is linear. Conversely, this 
function characterizes the system independent of the signals and can be 
used to predict the output due to a known input or to calculate the input 
which will cause a given output. The validity of these results will of 
course depend upon the quality of this model. An essential application of 
two channel analysis will therefore be to obtain a measure of the validity 
of the linear model which forms the basis of the system analysis. The 
two channel function which can be used for this, "linearity check", is the 
so-called Coherence Function. The Coherence Function is therefore of 
fundamental importance for a two channel measurement. 

Fig. 1. System with input signal a(t)) and output signal b(t). The Fourier 
Transform of a(t)) and b(t) are A(f) and B(f) respectively 

4 



 

The function which describes the system when presented in the time 
domain is called the Impulse Response Function h(τ), and when present- 
ed in the frequency domain is called the Frequency Response Function 
H(f). H(f) and h(τ) are related via the Fourier Transform and contain the 
same information about the system, although in two different domains. 
For the linear system in Fig.1 the relation between the input a(t) and 
output b(t) is mathematically described by: 

where b(t) is the convolution of h(t) and a(t). 

In the frequency domain the relation between input and output is given 
by 

B(f) = H(f) - A(f)                                   (1.2) 

where A(f) and B(f) are the Fourier Transforms of a(t) and b(t). 

Performing system analysis with a Dual Channel FFT Analyzer gives a 
number of advantages. Firstly, it is possible to measure the Frequency 
Response Function even though the input signal or the output signal is 
contaminated with extraneous noise i.e. even in situations where other 
inputs than the measured are present. Secondly, the estimated Frequen- 
cy Response Function(s) will represent the best linear fit (in the least 
squares sense) to the system. This is very important in analysing non- 
linear systems where a best linear fit is needed for mathematical 
modelling. The estimated Frequency Response Function will naturally 
depend upon the type of signals involved in the analysis and their level. 
The concepts of Frequency Response Function estimations are dealt 
with in Sections 4 and 5. 

In several applications the Dual Channel Analyzer is used to measure 
two outputs of a system. The time delay or the phase lag between the 
two signals can be determined from the Cross Correlation Function or 
the Cross Spectrum which are the basic two channel functions to be 
defined later. If the two output signals are sound pressure signals 
measured by two closely spaced microphones, the two channel FFT 
measurements can be used for calculation of the sound intensity. Trans- 
mission path identification and source location are examples of these 
applications. Another application is analysis of operational mode shapes 
 

(1.1) 
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of structures. This can be done by performing a number of dual output 
vibration measurements with the operational inputs acting on the sys- 
tem. This application will however not be dealt with in this article. 

It is the intention in this article to introduce the concepts of two channel 
FFT analysis in a fairly pictorial form without using a strict mathematical 
formulation which can be found in the references. 

2. Dual Channel Measurements 
A dual channel measurement can be considered to be a simultaneous 
measurement of the Cross Spectrum between the signals in the two 
channels, and a measurement of the Autospectrum (often called Power 
Spectrum) of each of the two channels. Although several new functions 
are available with dual channel analysis compared to single channel 
analysis the only additional calculation which is done in the basic 
measurement is the calculation of Cross Spectrum between the two 
signals. All the other functions such as Frequency Response Functions, 
Coherence, Cross Correlation, Impulse Response etc. are functions 
which are derived from the three spectra, namely the Autospectrum of 
the signal in channel A, the Autospectrum of the signal in channel B and 
the Cross Spectrum between the signals in channel A and B. 

Fig. 2. Simplified block diagram of the analyzer in the dual channel 
spectrum averaging mode 
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Fig.2 shows a simplified block-diagram of the analyzer in the dual 
channel spectrum averaging mode. Although the analyzer might have 
other measurement modes such as signal enhancement or amplitude 
probability, only the measurement mode relevant for normal two channel 
analysis will be discussed here. 

The measurement consists of recording the signals in the two channels 
followed by a Fourier Transform of each of these signals. This will (after 
multiplication and averaging) result in the two Autospectra and the 
Cross Spectrum. All the other functions can be computed by post 
processing and although several of these are needed in the analysis only 
one measurement has to be performed. This is very important in practi- 
cal applications. For instance, one estimate of the Frequency Response 
Function of a system (Fig.1) is computed by dividing the Cross Spectrum 
between the input and the output signals by the input Autospectrum. The 
corresponding Impulse Response Function can then be computed from 
this Frequency Response Function via the inverse Fourier Transform 
denoted by F-1 in Fig.2. The Coherence Function can be found by 
dividing the numerical square of the Cross Spectrum by the product of 
the Autospectra, etc. 

The function relating the two signals together in the time domain (or 
delay domain) is the Cross Correlation Function Rab(τ). This function 
gives a measure of how much the two signals a(t) and b(t) are "alike" 
with a certain delay τ between them. It can be estimated from the 
inverse Fourier Transform of the Cross Spectrum. 

If the signals in the two channels are the sound pressure signals 
measured by two closely spaced microphones, the sound intensity (not 
shown in Fig.2) can be calculated from the imaginary part of the Cross 
Spectrum. All these functions will be dealt with later separately. 

2.1. The Autospectra and the Cross Spectrum 
The two channel analysis is based on the concepts of Fourier Transform, 
which converts information from the time domain into the frequency 
domain or vice versa. No information is gained or lost in transforming 
from one domain to the other. The idea of Fourier analysis is to present 
the information in such a way that it is easy to interpret and facilitate 
solutions of the problems. 

The Fourier Transform of a time signal a(t) defines the complex spec- 
trum A(f) and is given by: 
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The Autospectra of a(t) and b(t) are then defined by 

SAA(f) = A* (f) · A(f)    and 
 

SBB(f) = B* (f) · B(f)    respectively, 

where * indicates complex conjugation. 

The Fourier Transform which is performed in practice is the so-called 
Discrete Fourier Transform (DFT). The Fast Fourier Transform (FFT) is 
just an algorithm which computes the DFT with a greatly reduced 
number of arithmetical operations compared to a direct computation. 
The DFT is a transform that works on finite time records of length T. The 
time signal is sampled at discrete points in time n · ∆ t, where ∆ t is the 
sampling time and n is an integer. The DFT results in the Fourier 
spectrum (given by (2.1) and (2.2)) of the finite time record sampled at 
discrete frequencies k · ∆ f. k is an integer and ∆ f is the spacing 
between the calculated lines in the frequency domain. ∆ f is called the 
resolution and given by the record length T, as ∆ f = 1/T. 

For a detailed discussion of this subject see Ref. [1], [2] and [3]. 

Each time history block (i) thus gives an estimate Âi(f) of the Fourier 
Transform A(f), 

(2.1) 

Likewise we have the spectrum B(f) of the time signal b(t) 

(2.2) 

(2.3) 

at the frequencies k · ∆f = k · 1/T. A time weighting function w(t) is 
often applied to the time signal prior to the calculation of the FFT, but is 
here omitted to simplify the notation. 

The expected value of Â*i(f) · Âi(f) is the Autospectrum SAA(f) i.e. 

(2.4) 
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In practice averaging is performed over only a finite number of records 
nd. This will of course introduce an error or an uncertainty in the 
estimate, which will be discussed in Section 9. 

Likewise the Autospectrum of the time signal b(t) is given by 

 
(2.5) 

where the individual estimates of B(f) are 

 
(2.6) 

computed at the discrete frequencies f = k · ∆ f = k · 1/T. 

The Autospectrum is real and gives the distribution of power (or energy) 
in the signal as a function of frequency. The word power is here used 
for the mean value of a squared quantity. If the signal is periodic the 
Autospectrum should be scaled in power i.e. Volt2 or Unit2, (for signals 
calibrated in a physical unit), as it contains power at some discrete 
frequencies. Continuous random signals are characterised by a power 
spectral density (PSD) and the Autospectrum should be scaled in 
Volt2/Hz or Unit2/Hz. Transient types of signals have energy distributed 
continuously in frequency and the Autospectrum should thus be scaled 
in energy spectral density (ESD) Volt2 · s/Hz or Unit2 · s/Hz. 

The Cross Spectrum SAB(f) between the two signals a(t) and b(t) is 
defined by A*(f) · B(f), where * indicates complex conjugation. When 
the DFT is used the Cross Spectrum is found by averaging the individ- 
ual estimates Â*i(f) · Bi(f) giving       

 
(2.7) 

The comments about the scaling of the Autospectrum will be the same 
for the Cross Spectrum. 

It can be shown that Âi(f) and Bi(f) are conjugate even i.e. Âi(-f) = Â*i(f) 
and Bi(-f) = B*i(f) (see for instance Ref. [2] or [3]). The Autospectra 
SAA(f) and SBB(f) are therefore real and even and the Cross Spectrum 
SAB(f) is conjugate even. The information at the negative frequencies is 
therefore the same as the information at the positive frequencies. This 
makes it often more convenient to work with the corresponding one- 
sided spectra GAA(f), GBB(f) and GAB(f) defined by 
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The power or energy is then only distributed at non-negative frequen- 
cies, see Fig.3. 

The Cross Spectrum is the fundamental function relating the signals in 
the two channels. The individual estimates of the Cross Spectrum 
Â*i(f) · Bi(f) can be written as 

           | Âi(f) | · | Bi(f) ej∆Φi(f) = | Âi(f) | · | Bi(f) | ej(ΦB(f) - ΦA(f)) 

where |  | means numerical value, and ΦA(f) and ΦB(f) are the phase of 
Âi(f) and Bi(f) respectively. Thus the amplitude of the individual Cross 
Spectrum estimates is the product of the individual amplitudes and the 
phase is the phase difference between Bi(f) and Âi(f). The averaging of 
these individual estimates Â*i(f) · Bi(f) will result in a spectrum SAB(f) 
having a phase which is a weighted average of the individual estimates 
∆Φi(f) (the weighting depending upon the amplitudes of Âi(f) and Bi(f)). 
The amplitude of SAB(f) will have a value between zero and 

depending upon the amount of fluctuation of the phase difference 
∆Φi(f) from record to record. This is illustrated in Fig.4. The amplitude 
of SAB(f) will thus not only depend upon the amplitudes of SAA(f) and 
SBB(f) but also how much correlation there is between Âi(f) and Bi(f). 

Fig. 3. One-sided spectrum G(f) formed from the two-sided spectrum S(f) 
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Fig. 4. Averaging of individual estimates of the Cross Spectrum SAB(f) = 
A*(f) B(f).                       
a) Phase of each estimate Â*i(f) Bi(f) is the same 
(b) Some fluctuation in the phase of the estimates Â*i(f) Bi(f) 
(c) Random phase of the estimates Â*i(f) Bi(f) 
In the figure the dependency of frequency is left out for 
convenience 

The concept of correlation will be defined and discussed in section 3. 
Perfect correlation at frequency f will cause ∆Φi(f) to be the same for 
each estimate (Fig.4.a) whereas if the signals are uncorrelated at fre- 
quency f, the estimates ∆Φi(f) will be random and between 0 and 2π 
causing SAB(f) to be zero (Fig.4.c). Fig.4.b shows a situation where there 
is some correlation between A(f) and B(f) at the selected frequency. The 
amplitude of SAB(f) is thus quite difficult to interpret and in itself is not 
used very often. The phase of SAB(f), however, is the phase difference 
("average of") between b(t) and a(t) at frequency f. In an input-output 
analysis as in Fig.1 the phase of SAB(f) will give the phase response of 
the system, or in general the phase lag from signal a(t) to signal b(t) as 
a function of frequency. 

The Cross Spectrum can also be written as GAB(f) = CAB(f) + jQAB(f), 
using the one-sided notation. CAB(f) is the part where A(f) and B(f) are 
in-phase and is called the coincident spectrum or just the cospectrum. 
The imaginary part QAB(f) is the part where A(f) and B(f) are 90° out-of- 
phase and is thus called the quadrature spectrum or the quad spectrum. 

As already mentioned the Cross Spectrum is one of the key functions 
for calculation of many other two channel functions rather than a 
function which is used just by itself. 
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2.2. Documentation for Measurement - Measurement Setup 
Apart from the three basic spectra GAA(f), GBB(f) and GAB(f), the 
parameter settings on the Analyzer are a vital part of the documentation 
of a measurement. Fig.5 shows a block diagram of the Brüel & Kjær 
Dual Channel Signal Analyzers Types 2032 and 2034 for clarification of 
some of the functions. 

For the input function it is necessary to know which input channels are 
used, polarity and sensitivity settings of these, selection of tow-pass 
and high-pass filters, together with calibration settings in Volts/Unit or 
Units/Volt and which Unit(s) is used for the measurement. 

For the recording it is relevant to have information about the triggering, 
delay settings, and selection of frequency span, whether baseband or 
zoom analysis is used, and for zoom analysis what the centre frequency 
is. The trigger can be set either on free run or on any of the sources: 
ch.A, ch.B, external, manual or generator (clock in the Analyzer). The 
delay between the trigger and recording in channel A must be docu- 
mented. For systems with inherent delay, (for example acoustic sys- 
tems), the delay between ch.A and ch.B should be set and documented. 
Otherwise, systematic bias errors will occur in the analysis. In the digital 
zoom-processor (see Fig.5) it is possible to select a frequency span 
(sampling frequency) and a centre frequency, if zoom analysis is per- 
formed (as opposed to normal baseband operation). 

The analysis is performed using the FFT algorithm of the DFT which 
works on blocks of time data. For several reasons different types of 
weighting functions can and should be applied to the time history 
records before the FFT is calculated. Some of these weighting functions 
will be discussed later. The type of weighting function used in the 

Fig. 5. Block diagram of the Brüel & Kjær Dual Channel Signal Analyzer 
type 2032 or type 2034 
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Fig. 6. Example of a measurement setup from the Brüel & Kjær Dual 
Channel Signal Analyzer type 2032 

analysis is part of the documentation for the measurement. The so- 
called zero pad mode used for analysis of correlation functions can be 
considered as being a mode where a special time weighting function, 
which nullifies the last half part of the record, is used. Also the type of 
averaging (linear or exponential) and the number of averages should be 
reported, together with information of how much overlap between the 
analyzed time records has been used in the analysis, if any overlap 
conditions have been set. 

All the above information can be stored as a measurement setup and 
used as documentation for the measurement. Fig.6 shows an example 
of such a measurement setup from the Brüel & Kjær Analyzer Type 
2032. This measurement setup together with the Autospectra and the 
Cross Spectrum and perhaps also a time record from each of the 
channels will make up the total documentation. 

2.3. Presentation of Processed Data - Display Setup 
In the Brüel & Kjær Analyzers Types 2032 and 2034 (see Fig.5) there is a 
separate processor called the Display Processor or the "Master", which 
not only controls the Signal Processor to perform the FFT, averaging 
etc. but also controls all the required post-processing, either after the 
measurement or during the measurement (live display). This can be 
division or multiplication of spectra, performing a Hilbert Transform 
(discussed later) or an inverse FFT (using the Signal processor) etc. 
Most of the functions are complex and can therefore be presented in a 
number of formats or coordinates: Real part. Imaginary part, Magni- 
tude, Phase, Imaginary versus Real part (Nyquist plot) or Magnitude 
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versus phase (Nichols Plot). Fig.7 illustrates these different formats for 
a Frequency Response Function being the transfer accelerance of a 
mechanical system measured by use of an Impact Hammer, an Acceler- 
ometer, and the Brüel & Kjær Analyzer Type 2032. Depending upon the 
application and what kind of information is required from the measure- 
ment, the function, the format, as well as the X and Y scales have to be 
selected. The scales can be linear or logarithmic and integration or 
differentiation of the function can also be obtained (if, for instance, 
mobility or compliance instead of accelerance is desired). This is the 
documentation for the displayed graph and can be seen as the text in 
the illustrations on Fig.7. Apart from this so-called display setup there is 
of course a need for some cursors for reading out of data in different 
ways. The cursor information is found on the right side of the illustra- 
tions on Fig.7. 

Fig. 7. Different presentations of a complex function, here the Frequency 
Response Function of a mechanical system (transfer acceelerance) 
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3. Correlation and Coherence 
In system analysis where an input and an output is measured it is of 
great importance, as part of the analysis, to assess the degree of linear 
relationship between the input and the output. 

Having two stochastic variables x and y which could be measurements 
of input and output of a system, the correlation between these variables, 
is described by the so-called Correlation Coefficient ρ xy defined by: 

      ρ xy  =  
σ xy                                                       (3.1) 

                 
σ x σ y 

where σ xy is the covariance of x and y given by 

σ xy = E[(x - µx)(y - µy)]                    (3.2) 

and σ x and σ y  are the standard deviations of x and y defined by 

                                    σ x  =  √E [(x - µx)2 ]                                            (3.3) 

and                              σ y = √E [(y - µy)2 ]                                              (3.4) 

E is the expected value and is found by averaging, while µx and µy are 
the mean values of x and y respectively, i.e. 

µx = E [x]                               (3.5) 

and                             µy  = E [y]                                                           (3.6) 

ρ  xy  will have a value between 0 and 1. If there is a perfect linear 
relationship between x and y i.e. y = αx + β, for all samples of x and y, α  
and β being constants, ρ  xy  will be 1. This situation is illustrated in 
Fig.8a. 

If the x and y samples are contaminated with some random noise 
(scatter) as shown in Fig.8.b, ρ  xy  will be less than 1. Notice the 
underlying linear relationship between x and . This could be the situa- 
tion where the system under investigation is perfectly linear but there is 
some extraneous noise in the measurements (samples) of the input x 
and/or the output. In a situation where the relation between the 
samples of x and  is well defined but non-linear, the value of ρ  xy  will 
also be less than 1, even though the x and y are free of random noise. 
Fig.8.c shows an example of this situation. 
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Fig. 8. The Correlation Coefficient σxy indicates the amount of linearity 
between variables x and y 

If the variables x and y are not at all related to each other, the samples 
will be randomly scattered as depicted in Fig.8.d and the Correlation 
Coefficient ρ xy will be zero. 

Thus, the value of the Correlation Coefficient ρxy is a measure of the 
degree of linear dependance between the variables (samples) of x and . 

One of the other functions which can be computed in the two channel 
FFT Analyzer is the Coherence Function γ2(f) defined by 

γ2(f)    GAB(f) 2
   =    SAB(f) 2 

GAA(f) GBB(f)                 SAA(f) SBB(f) 

At each given frequency, f, the Coherence Function corresponds to the 
Correlation Coefficient Function squared given by 
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ρ2
xy  = σ2

xy                           (3.8) 
         σ2

xσ2
y 

Let x be the complex spectral component at frequency f, A(f), and y be 
the complex spectral component at the same frequency f, B(f). By 
comparing (2.4) with (3.3),(2.5) with (3.4) and (2.7) with (3.2) it is seen that 
the Coherence and the Correlation Coefficient squared are similar (apart 
from the subtraction of the mean values µx and µy from x and y for σx, 
σy and σxy and the complex conjugation due to the fact that the spectral 
components A(f) and B(f) are complex). All the properties of the 
Correlation Coefficient (squared) will therefore also apply for the Coher- 
ence Function. 

Similar to the Correlation Coefficient, the Coherence γ2(f) of the signals 
a(t) and b(t) is a function which on a scale from 0 to 1 measures the 
degree of linear relationship between the two signals at any given 
frequency f. 

Without going into a detailed discussion of this subject, only the most 
common reasons for having Coherence less than one will be discussed 
very briefly here. 

Coherence less than one can be due to one or more of the following 
situations. 

a)  Uncorrelated noise in the measurements of a(t) and/or b(t). 

b)  Non-linearity of the system under investigation. 

c)  Leakage in the analysis (resolution bias error). 

d)  Delays in the system not compensated for in the analysis. 

a) If the measurements are contaminated with uncorrelated extraneous 
noise, the individual estimates of the Cross Spectrum Â*i(f)Bi(f) will 
add as depicted in Fig.9.a, while the Autospectra estimates 
Â*i(f) · Âi(f) and B*i(f) · Bi(f) being all real are added as in Fig.9.a. The 
linear related parts of Âi(f) and Bi(f) will add in the Cross Spectrum 
estimation as shown earlier in Fig.4.a while the uncorrelated noise 
terms will gradually average out as illustrated in Fig.4.c. The Auto- 
spectra GAA(f) and GBB(f) will include the extraneous noise and the 
Coherence will be less than one. The more extraneous noise there is 
in the measurements the lower will the Coherence be. 
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Fig. 9. Effects on the Autospectral and the Cross Spectrum estimates of: 
a) extraneous noise in the measurement of a(t) and/or b(t) 
b) non-linearity in the system 
The dependency of frequency is omitted for convenience 

 
b) Fig.9.b shows a situation where the gain H(f) (amplitude and phase) 

of the system depends upon the input level A(f) (related to Fig.1). 
The sample Â*2(f) · B2(f)  has  a  different  phase  than  the 
sample Â*1(f) · B1 (f) due to the fact that the input amplitude sample 
| Â2(f)  is greater than the input amplitude sample | Â1(f) |. The ar- 
gument for low Coherence in such a situation is similar to that where 
uncorrelated noise was present. 

In a situation where the phase of H(f) is independent of A(f) but the 
amplitude of the gain | H(f) | is dependent on the level of A(f), it is 
easily seen as well that the Coherence will be less than one. Let us 
for instance assume | Bi(fo)  = |Âi(fo) 2 for each estimate at fre- 
quency fo. It is then found that 
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As a simple example let 

nd = 3 and |Â1(fo)| = 1, |Â2(fo)  = 2, and  Â3(fo)   = 3 gives 
 

γ2(fo) =
              (1 + 8 + 27)2              =  324   <  1 

                (1 + 4 + 9) · (1 + 16 + 81)     343 

Notice however that the input estimates Âi(f) are assumed to vary in 
amplitude. 

Also a non-linear system when excited at one frequency can give rise 
to response signals at other frequencies. This content of power at 
other frequencies will be analyzed as extraneous noise at these other 
frequencies in the output b(t). It is here assumed that the input signal 
is random causing Âi(f1) to be uncorrelated with Âi(f2), f1 ≠ f2. 
This will be discussed further in section 5. 

c) Before discussing why leakage can lead to low Coherence, a brief 
description of leakage is given. 

Leakage is a phenomenon which may arise in the frequency domain 
due to the time limitation of the signal before the FFT calculation is 
performed. Only a finite time record length of the time signal can be 
analysed i.e. the signal which is analyzed is the original time history 
a(t) multiplied by a weighting function w(t). As multiplication in one 
domain corresponds to a convolution in the other domain (Convolu- 
tion Theorem for the Fourier Transform, see Ref. [1, 2 and 3]), the 
spectrum A(f) of the original time signal a(t) will be convolved with 
the Fourier Transform W(f) of the weighting function w(t). In other 
words: 
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Fig. 10. Convolution of spectrum A(f), of the original time signal, with the 
Fourier Transform W(f) of the time weighting function giving the 
estimated spectrum A(f) 

Fig.10 shows how a time weighting w(t) might influence the estimate 
A(f) of a spectrum A(f). Power in one frequency region leaks into 
adjacent frequency regions causing the peak amplitude to drop and 
the amplitudes in valleys to rise as illustrated in Fig.10. The amount 
of leakage will depend upon the type of weighting function used in 
the analysis. A more detailed description of leakage and convolution 
is found in Ref. [1] and [2]. The so-called Hanning weighting, which is 
one period of a cosine matching the record length of the Analyzer 
and lifted so it starts and stops at zero, is the normally used 
weighting function when analyzing continuous random or sinusoidal 
signals. Use of different weighting functions for different types of 
signals will be dealt with in Section 5. 

In explaining why leakage in the analysis might reduce the Coher- 
ence, let us consider two situations: 

1) The complex Frequency Response Function H(f) = B(f)/A(f) is a 
constant H in a frequency range wider than the bandwidth of 
W(f). 

2) The complex Frequency Response Function H(f) = B(f)/A(f) 
undergoes rapid changes in amplitude and phase with frequency. 
Rapid is here meant relative to the resolution in the analysis 
(bandwidth of W(f)). This could be the case in the frequency 
region around a system resonance or anti-resonance. 

It is assumed that there is no extraneous noise, that the system is 
linear and that the input signal is a random signal. 

In the first situation 1) there will be no drop in the Coherence 
Function as the leakage will be the same in both spectra A(f) and 
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B(f), provided that the same weighting function is used in the two 
channels. Each of the samples of the spectra Âi(f) and Bi(f) at 
frequency f can be considered as a sum of the true spectrum A(f) 
and B(f) and a leakage term Aileakage(f) and Bileakage(f) where 
 

B(f)   = H(f) · A(f) and Bileakage(f) = H(f) · Aileakage(f) 

giving       Bi(f) = B(f) + Bileakage(f) = H(f) (A(f) + Aileakage(f)) 

= H(f) Âi(f)  

and Âi*(f) · Bi(f)) = H(f) Âi*(f) · Âi(f) for all the samples in the 
averaging. 

Thus | GAB(f)   2 =  H(f) 2 G2
AA = GBB(f) GAA(f) which means that 

γ2(f) = 1 in the frequency range under consideration. This situation 
is shown in Fig.11.a. 

In the other situation 2) where the Frequency Response Function of 
the system changes rapidly in amplitude and phase (relative to the 
 

Fig. 11  Leakage in the estimates of the spectra A(f) and B(f) 
a) Frequency Response Function H(f) = B(f)/A(f) is constant 

(= H) in the frequency range under consideration. The ratio 
of the leakage terms Bileakage (f)/Aileakage (f) will be equal to 
H(f) = H 

b) Frequency Response Function H(f) = B(f)/A(f) has rapid 
changes, relative to the resolution in the analysis, in ampli- 
tude and phase. Aileakage(f) and Bileakage(f) can vary indepen- 
dant of each other. 
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frequency resolution in the analysis) the leakage terms will not be 
related to each other in any simple fashion, see Fig.11.b. The leakage 
terms Aileakage(f) and Bileakage(f) can vary to a certain extent inde- 
pendently of each other. This situation thus corresponds to the 
situation where the input and/or the output signal is contaminated 
with extraneous noise (Fig.9.a) and there will be a drop in the 
Coherence Function in this frequency region. How much the Coher- 
ence will drop depends of course upon how much the amplitude and 
phase of the Frequency Response Function changes within the reso- 
lution bandwidth in the analysis. 

The drop in Coherence can also be explained from the time domain 
description. Having a resonance peak in the Frequency Response 
Function which is narrower than the analysis bandwidth means that 
the Impulse Response Function h(τ) of the system is longer than the 
time record length T. According to the convolution integral (1.1) 
some of the signal in the time record in channel B will be due to the 
input signal before the time record in channel A and some of the 
response signal due to the input signal in the time record in ch. A will 
be in output signal b(t) after the time record in ch.B. The Coherence 
therefore drops in the measurement. Decreasing the analysis band- 
width will increase the correlation between the leakage terms (in- 
crease the time record lengh T relative to the length of the Impulse 
Response Function) and the Coherence will increase. This is illustrat- 
ed in Fig.12 which shows the magnitude of a Frequency Response 
Function estimate and Coherence with a resolution of a) 16 Hz and b) 
1 Hz. The drop in Coherence at 1040 Hz in a) is thus due to leakage. 
This phenomenon is also often referred to as resolution bias error. It 
is important to note that these arguments are valid only if the input 
signal is random (random from data record to data record). 

If the signal is deterministic and repeats itself for each data record, 
leakage will not be detected by the Coherence Function. This can be 
explained as follows. Having an input signal which repeats itself for 
each data record will give Âi(f) = Âi(f) and thus Bj(f) = Bj(f), as the 
leakage is the same for each sample. Each sample of the Cross 
Spectrum Âi*(f) · Bi(f) will also be identical and the Coherence will 
be one. 

Even if the input signal varies in amplitude i.e. Âi(f) = c Âj(f), where 
c is real, and assuming that the system is linear, we will get Bi(f) = 
c Bj(f) and thus Âi*(f) · Bi(f) = c2 Âi*(f) · Bj(f). The samples of the 
Cross Spectrum will add as shown in Fig.4.a and the Coherence will 
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Fig. 12.  Magnitude of Frequency Response Function and Coherence 
Function measured with a resolution of a) 16 Hz and b) 1 Hz 
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be one. This situation occurs in practice when working with an 
impact hammer as an input force generator for a (linear) mechanical 
structure. An illustration of this will be given in Section 5 where 
excitation techniques are discussed. 

d) Coherence measurement between input and output signals of a 
system with a physical delay from input to output or with reverbera- 
tion requires some special attention. Having a situation as described 
in Fig.13, where there is a delay of τ sec from input to output and a 
record length (time window) in the analysis of Tsec, the estimated 
Coherence γ2(f) will be biased by a factor of (1 - τ/T)2 if no delay is 
set between the data blocks in the analysis. The bias error is derived 
on the assumption that the signals are white noise (Ref. [4]). In order 
to get an unbiased estimate of the Coherence Function a delay of 
#sec has to be set between the time data block in ch.A and the time 
data block in ch.B. It is thus essential to have a delay setting facility 
between the channels, when analysis is performed on systems with 
physical delays. When reverberation (or multiple reflections) is pre- 
sent at the output of the system, the record length T in the analysis 
should be longer than the reverberation time Trev in the system in 
order to avoid significant bias errors (Ref. [4]). The reverberation 
time is defined as the time it takes the output signal to decrease 
60 dB after an instantaneous termination of the input signal. A more 
detailed discussion of some of the subjects concerning Correlation 
and Coherence is found in Ref. [4]. 

Fig. 13. Measurements on systems with delays require introduction of 
this delay between the time data blocks in the analysis 
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4. Frequency Response Function Estimates 
Probably the most common application of two channel analysis is to 
measure Frequency Response Functions of physical systems. Referring 
to the ideal system in Fig.1 the Frequency Response Function defined by 

H(f) = B(f), describes the system in the frequency domain. The system A(f) 
can just as well be described in the time domain by the Impulse 
Response Function h(τ) defined by the inverse Fourier Transform of H(f) 
: h(τ) = F-1 {H(f)}. The Impulse Response Function will be dealt with 
separately in Section 6. 

A number of assumptions about the system have to be made before the 
system can be described in terms of a Frequency Response Function (or 
an Impulse Response Function): 

1. The system must be physically realisable, i.e. it cannot respond to an 
input before it is applied, or h(τ) = 0 for τ < 0. 

2. The system must be time invariant. Its properties may not change 
with time i.e. h(τ) and H(f) are independent of time. 

h(τ, t) = h(τ) & H(f, t) = H(f), -∞ < t < ∞. 

3. The system must be stable, i.e. it can only respond with a limited 
amount of energy when excited with a finite amount of energy at the 
input. This is also true if 

4. The system must be linear. This means that if the inputs a1(t) and 
a2(t) produce the outputs b1(t) and b2(t) respectively, then the input 
a1(t) + a2(t) must produce the output b1(t) + b2(t), and the input 
c · a1(t) must give the output c · b1(t), where c is an arbitrary 
constant. The essence of this is that the functions h(τ) and H(f) 
characterize the system itself independent of the signals a(t) and 
b(t) involved. 

The assumption of linearity is probably the requirement which is most 
often violated in practical applications. The input signal may have such 
high amplitude levels that the system will be excited beyond its range of 
linear behaviour. Also some systems are inherently non-linear and the 
system function description will not be valid except for very limited 
ranges of input signal levels. 
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The estimates of Frequency Response Functions using dual channel FFT 
will give the optimum calculation of H(f) in the least-squares sense (see 
Ref. [4]). If the input signal is random the best linear approximation to 
the system is obtained and the Frequency Response Function can 
therefore be very useful and give meaningful results unless the system is 
strongly non-linear. 

Time variations can also cause severe problems in practice. The system 
characteristics might depend upon temperature, pressure and other 
parameters giving problems in the linear modelling of systems. However, 
in some applications, such as speech analysis and synthesis, it is 
relevant to work with a linear system varying in time i.e., describing the 
system, being the vocal tract for speech applications, in terms of a 
H(f, t). This is of course nonsense in the true Fourier sense (equation 
(1.2), (2.1) and (2.2)), since the Frequency Domain Function cannot 
change with time. Having a well defined time window of a given length T 
the transforms (2.3) and (2.6) could be used to define a Frequency 
Response Function H(f) from (1.2) for that time window. The next time 
window (of length T) will then define a new Frequency Response Func- 
tion for the system via (2.3), (2.6) and (1.2) etc. A typical time base T for 
speech applications is 25 msec. Analysis of time varying systems will not 
be dealt with in this article. Ref. [10] and [11] gives some examples of 
this for speech analysis. 

The Frequency Response Function of the ideal system of Fig.1, fulfilling 
the requirements 1) - 4) will now be estimated using the Two Channel 
FFT Analyzer. The fundamental equation relating the input spectrum and 
output spectrum is 

B(f) = H(f) · A(f)                         (4.1) 

Multiplying by A*(f) on both sides of this equation we get 

A*(f) · B(f) = H (f) A* (f) A (f)                    (4.2) 

or                   SAB(f) = H (f) SAA (f)                        (4.3) 

In practice it is the estimates 

of SAB(f) and SAA(f) or GAB(f) and GAA(f) which are measured with the 
Dual Channel Analyzer. The ratio of these estimates therefore gives a 
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measure of the Frequency Response Function and is called H1(f). Using 
the one-sided spectra we get from (4.3) 

H(f) = GAB(f) ≡ H1(f)                                        (4.4)           GAA(f)  

Multiplying (4.1) by B* (f) instead of A*(f) we get 

B*(f) B(f) = H(f) B*(f) A(f)                     (4.5) 

or                              SBB(f) = H(f) SBA(f)                                                (4.6) 

Using this equation we see that the ratio of the estimates of SBB(f) and 
SBA(f) or GBB(f) and GBA(f) also gives a measure of the frequency re- 
sponse function H(f). This estimate is called H2(f) and will in many 
practical cases give a different result than H1(f). In terms of the one- 
sided spectra estimates we therefore have 

H(f) = GBB(f) ≡ H2(f)                                         (4.7)           GBA(f) 
Note that the phase of H1(f) is the same as the phase of H2(f) since 
G*BA(f) = GAB(f). 

Also note that        H1(f)  = GAB(f) GBA(f) = γ2(f)                (4.8)  H2(f)       GAA(f)  GBB(f) 

A third method of estimating the Frequency Response Function is found 
by taking the numerical square of (4.1): 

B*(f) B(f) = H*(f) H(f) A*(f) A(f) 

which is            SBB(f) =  H(f) 2 · SAA(f)                                                (4.9) 

or                     GBB(f) =  H(f) 2 · GAA(f)                                              (4.10) 

The ratio of the output and the input Autospectra GBB(f) and GAA(f) is 
called the Autospectra estimate and is denoted by | Ha(f) |. As it is real, 
it contains only information about the amplitude of H(f), unlike H1(f) and 
H2(f) which contain information of both amplitude and phase. 

Thus:              | H(f) |2 = GBB(f) = |Ha(f)|2                 (4.11) GAA(f) 
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The advantages and disadvantages of using the three different methods 
of determining the Frequency Response Functions in different situations 
will now be described in terms of bias errors. In all situations an ideal 
system will be assumed, and that sufficient amount of averaging is 
performed in order to remove the random errors. Formulae for random 
errors will be dealt with in Section 9. In the situations described in 
Sections 4.1 to 4.5 it is also assumed that sufficiently narrow bandwidth 
is used in the analysis in order to resolve system resonances (and 
antiresonances) without any leakage problems (resolution bias). Bias 
errors due to leakage in the analysis are discussed separately in Section 
4.6. 

4.1. Ideal Situation 
The ideal situation is one in which the measured signals a(t) and b(t) are 
not contaminated by any kind of extraneous noise, and where a(t) is the 
only input to the system giving the output b(t). This is shown in Fig.14. 

Fig. 14. Ideal system in ideal situation 

For each individual estimate: Bi(f) = H(f) Âi(f) 

and therefore from the above section it can be seen that 

H1(f) = H2(f) = H(f) and  Ha(f)  =  H(f)  

The Coherence for the measurement will be 1,0, as a(t) and b(t) are 
ideal and linearly related. In this situation only a few averages are 
needed in the analysis depending upon the types of signals (type of 
excitation) involved. 

4.2. Noise at output 
If the measured output signal b(t) is contaminated by extraneous noise 
n(t) the situation is as shown in Fig.15. The output signal v(t) is linearly 
related to the measured input a(t) as in the ideal situation. The noise 
term n(t) is assumed to be uncorrelated to a(t) and therefore not 
correlated to v(t) either i.e. GAN(f) = GVN(f) = 0. 
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Fig. 15. Ideal system with extraneous noise in measured output signal b(t) 

The noise signal n(t) could in a practical situation be noise from 
transducers, instrumentation or computational noise in the analysis. 

From Fig.15 we have 

Bi(f) = Vi(f) + Ni(f) = H(f) Âi(f) + Ni(f) 

giving            GBB(f) = GVV(f) + GNN(f) =  H(f) 2 GAA(f) + GNN(f) 

and               GAB(f) = GAV + GAN = GAV(f) = H(f) GAA(f) 

since            GAN(f) = 0. 

The uncorrelated noise is averaged out in the measured GAB(f) as 
discussed earlier. H1(f) will in this situation therefore give an unbiased 
estimate of the Frequency Response Function. 

H1(f) =
 GAB(f)

 = H(f)                 (4.12)                GAA(f) 

It can be shown (Ref. [4]) that H1(f) in this situation relates as much of 
the output b(t) to the input a(t) as possible, minimizing the amount of 
noise n(t). H1(f) is therefore called the optimum estimate of H(f). 

For the estimate H2(f) however we get 

H2(f) =
 GBB(f) =  H(f) 2 GAA(f) + GNN(f) 
GBA(f)  H*(f) GAA(f) 

= H(f) (1 + GNN(f))                             (4.13) 
                 GVV(f)  

 
which is an overestimate of H(f) in magnitude due to the noise GNN(f)) 
measured in GBB(f). The phase of H2(f) is determined by the Cross 
Spectrum and is therefore correct. 
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The Autospectrum method gives: 

 Ha(f) 2 = GBB(f) = GVV(f) + GNN(f) 
                 GAA(f)       GAA(f) 

             = |H(f)|2 (1+ GNN(f))                                          (4.14) 
                             GVV(f) 

 Ha(f)  overestimates  H(f)  similar to  H2(f)  by the noise term 
 

The Coherence in this measurement situation 
 
is      γ2(f) =   GAB(f) 2

  =   GAA(f) GVV(f)  =   GVV(f) 
                 GAA(f)  GBB(f)      GAA(f) GBB(f)    GBB(f)                                (4.15) 

 

 

or      γ2(f) =  
H1(f)

 =             1               
                     H2(f)

         (1 +   GNN(f)
)
 

                                              GVV(f) 

GVV(f) is the part of the measured output signal which is linearly related 
(through H(f)) to the input signal. From (4.15) it is seen that it is given 
by GVV(f) = γ2(f) GBB(f). This leads to the definition of the 

Coherent Power = γ2(f) GBB(f) 

which is one of the functions which can be computed from the two 
channel measurement (see Section 2, Fig.2). 

The uncorrelated noise is given by GNN(f) = (1 - γ2(f)) GBB(f) and the 
function Non-Coherent Power is therefore defined by 

Non-Coherent Power = (1 - γ2(f)) GBB(f) 

With the two channel measurement it is thus possible to calculate the 
noise spectrum without making a measurement with the signal a(t) 
"turned off". 
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The signal to noise ratio at the output, GVV(f) is given by γ2(f)· 
                                                                      GNN(f)                        1-γ2 (f) 

Another function computed by post processing is therefore 

γ2(f) 
Signal to Noise Ratio =  

                                        1 - γ2 (f) 

4.3. Noise at Input 
Let us consider the situation shown in Fig.16. The noise m(t) is assumed 
to be uncorrelated with u(t) i.e. GMU(f) = GMB(f) = 0. In practice the 
noise m(t) could be noise from transducer, instrumentation or computa- 
tional noise as in the previous situation of Section 4.2. 

The fundamental relations between the individual estimates are in this 
situation 

Bi(f) = H(f) Ûi(f) and Âi(f) = Ûi(f) + Mi(f) 

giving           GAA(f) = GMM(f) + GUU(f) 

                GBB(f) = | H(f) |2 GUU(f) = | H(f) |2 (GAA(f) - GMM(f)) 

and          GAB(f) = GUB(f) = H(f) GUU(f) 

since m(t) is uncorrelated to u(t). 

For the H1(f) estimate of H(f) we get 

                GAB(f)             H(f) GUU(f)                           1 
H1(f) =      =         = H(f)          (4.16) 
                GAA(f)   GNN(f) + GUU(f)       1 + GMM(f)                                                                GUU(f)                                  

Fig. 16. Ideal system with extraneous noise in measured input signal a(t) 
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which is a biased estimate of H(f). The more noise GMM(f) there is 
relative to input signal GUU(f) the lower will the amplitude of H1(f) be. 
The phase will be correct since it is determined by the Cross Spectrum. 

The estimate H2(f)) is given by: 

H2(f) = GBB(f)   =  |H(f)|2 GUU(f) = H(f)             GBA(f)      H*(f) GUU(f)                                      (4.17) 

It is seen that H2(f) is insensitive to uncorrelated noise in the input 
measurement (apart from a random error due to the insufficient number 
of averages). This was first pointed out in Ref. [5]. 

For the Autospectrum method we obtain: 

|Ha(f)|2 =  GBB(f)  = |H(f)|2                    GUU(f) 
                     GAA(f)                  GMM(f) + GUU(f)   

 

=|H(f)|2               1                           (4.18) 
1 +  GMM(f) 

                                                        GUU (f) 

The bias error in | Ha(f) | is thus an underestimation by a factor of 

This situation with input noise can occur in practice when a shaker is 
used to excite a mechanical system with stationary force excitation. At 
the resonance frequencies of the structure the vibration response to a 
certain force input will be very large (very high mobility). The power 
ampifier driving the shaker will thus see a very high electrical impedance 
at the resonance frequencies, causing the current and thereby the input 
force to drop perhaps as low as the background noise level at those 
frequencies. 
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The Coherence is given by: 

 γ2(f) =   |GAB(f)|2     =  H 1(f)  =     1             (4.19) 
              GAA(f) GBB(f)           H2(f)       1 + GMM(f)             

                                                                              GUU(f) 

and the input noise is detected by the Coherence Function as expected. 

Notice that the Coherent Power at the output in this situation is GBB(f). 
The previously defined Coherent Power = γ2(f) GBB(f) (Section 4.2) has 
therefore no physical meaning in this situation. Likewise will the previ- 
ously defined Non-Coherent Power = (1 - γ2(f)) GBB(f) (section 4.2) 
have no meaning in this situation. 

The Signal to Noise Ratio, 
GUU(f) 

is however given by  γ2(f) as in 
                                                 

GMM(f)
                       

 
     

   1 - γ2(f)         

the situation with noise at the output. 

As H1(f) gives the optimum estimate of H(f) for the situation of noise at 
output, H2(f) will similarly in the situation of noise at input give the 
optimum estimate of H(f) relating as much of the input signal GAA(f) to 
the output signal GBB(f) minimizing the amount of noise GMM(f) (see 
Appendix A). 

4.4. Other Inputs 
If there are other inputs to the system, which are not measured in a(t), 
but which contribute to the measured output b(t) we have the situation 
as depicted in Fig.17. This is encountered in practice when a controlled 
and measurable input a(t) is applied to a system which is also excited by 
some operational and unmeasurable inputs m(t) or if the system is 
excited by more operational inputs and only one of these is measured. 

Let us first assume that the inputs a(t) and m(t) are uncorrelated i.e. 
GAM(f) = 0. 

Fig. 17. Ideal system with another input signal passing through the 
system 
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We thus have       Bi(f) = H(f) (Âi(f) + Mi(f)) 

giving            GBB(f) = H(f) 2 (GAA(f)+ GMM(f)) 

and               GAB(f) = H(f) GAA(f) since GAM(f) = 0 

From this we get   H1(f) = GAB(f)  = H(f)                       (4.20)  GAA(f) 

and                            H2(f) =
 GBB(f)  = H(f) 2 (GAA(f) + GMM(f))            (4.21) GBA(f)          H*(f) GAA(f) 

= H(f) (1 + GMM(f)) 
 GAA(f) 

If the inputs a(t) and m(t) are uncorrelated this situation is equivalent to 
the situation with uncorrelated noise at the output. H1(f) has no bias 
error while H2(f) overestimates the amplitude with the "noise to 

signal ratio" term (1 +  GMM(f)
) =       GAA(f)  

As expected the Autospectrum method gives 

Ha(f) 2 = GBB(f) = H(f) 2 (1 + GMM(f) ) similar to H2(f) .  (4.22) GAA(f)                            GAA(f) 

As in the previous situations the phase of H1(f) and H2(f) are the same 
and both correct. 

If the input signals a(t) (measured) and m(t) (not measured) are as- 
sumed to be correlated the formulae will be changed as follows: 

Bi(f)  = H(f)(Ai(f) + Mi(f))   

giving                    GBB(f)  =  | H(f) |2  ( GAA(f) + GMM(f)+ GAM(f) + GMA(f) ) 

and                       GAB(f)  =  H(f) ( GAA(f) + GAM(f)) 

which can be written as      H1(f) = H(f) (1 + 
GAM(f)

)                             (4.23) 
GAA(f) 

and                  H2(f) = H(f) (1 + GMM(f) + GAM(f)                              GAA(f) + GMA(f) 

and       Ha(f)  2 =   H(f)  2 (1 + GMM(f) + GAM(f) + GMA(f) )    (4.25)                           GAA(f) 
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All the estimates have a bias error in amplitude and note that H1(f) and 
H2(f)) can be biased in phase as well since GAM(f) can be complex. 

For a detailed discussion of analysis of systems with correlated inputs 
see Ref. [4]. 

4.5. Noise at both Input and Output 
This general situation is shown in Fig.18. The noise signals m{t) and n(t) 
are assumed to be uncorrelated with each other and with u(t) and v(t). 

From the fundamental equations: 

GAA(f) = GUU(f) + GMM(f) 

GBB(f) =   H(f) 
2 
GUU(f)+GNN(f) 

and                          GAB(f) = GUV(f) = H(f) GUU(f) 

H1(f)         = H(f)      1                                                 (4.26) 
                          1 + GMM(f) 
                                GUU(f) 

H2(f)     = H(f)  (1 + GNN(f))                                         (4.27) 
                              GVV(f) 

and         Ha(f) 2 = H(f) 2                   (4.28) 
 

It can be seen that   H1(f)   underestimates   H(f)   due to the noise at 
input and that   H2(f)   overestimates   H(f)   due to the noise at output. 

Fig. 18. Ideal system with extraneous noise in both measured input signal 
and measured output signal 
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                          1 + GMM(f) 
                                GUU(f) 

(

1 + GNN(f)

)                                       GVV(f) 



 

Thus by combining   H1(f)   and   H2(f)   we have a lower and an upper 
bound of the true   H(f)   since 

  H1(f)   ≤    H(f)    ≤    H2(f)                               (4.29) 

The phase of H1(f) and H2(f) are the same and correct, given by the 
Cross Spectrum. 

  Ha(f)   will either underestimate, overestimate or be equal to   H(f)   
depending upon the relation between the noise to signal ratios 
GNN(f)           GMM(f) 
            and  GVV(f)           GUU(f) 

The Coherence is 

γ2(f) =            
GVV(f)  GUU(f) 

( GUU(f) + GMM(f)  (   GVV(f) + GNN(f)) 

=                           1                                                     (4.30) 

(
1 + GMM(f)

 ) 
 (1 + GNN(f) )            

GUU(f)               GVV(f) 

Presence of uncorrelated noise signals is detected by the Coherence 
Function, but it cannot distinguish between input and output noise. 

As a consequence of this the previously defined Coherent Power 
≡ γ2(f) GBB(f) only gives the true coherent power GVV(f), if GMM(f) = 0. 
Likewise the Non-Coherent Power = (1 - γ2(f)) GBB(f) will only give the 
correct result GNN(f), if GMM(f) = 0. 

4.6. Leakage in the Analysis 
As discussed in Section 3, leakage can cause deformation of the 
estimated spectra (Fig.10) and therefore lead to bias errors in the 
Frequency Response Function estimates. 

If the resolution in the analysis is too coarse compared to the bandwidth 
of the system resonances and the input signal is random, the Coherence 
Function will detect this leakage by having a value less than one at the 
resonance frequencies (see Figs.11 and 12). The Coherence can there- 
fore give a warning of potential bias errors in the Frequency Response 
Function estimates. Fig.19 gives an example where a Frequency Re- 
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Fig. 19. Magnitude of Frequency Response Function estimate H1(f) and 
Coherence Function from a baseband measurement on a me- 
chanical system. Random noise excitation 

sponse Function is estimated in the frequency range 0 - 3,2 kHz (base- 
band analysis). The system is a mechanical structure and the Frequency 
Response Function is the point accelerance (acceleration over force) 
estimated by H1(f). The structure is excited with a random force signal 
from a shaker, driven by a generator and a power amplifier. The force 
signal is measured with a force transducer while the response is mea- 
sured with an accelerometer. A number of resonances (modes of vibra- 
tion) in the structure are detected and their approximate frequencies can 
be found from this measurement. However, the low Coherence around 
the resonance peaks are caused by the lack of resolution in the analysis 
and the leakage effect will introduce bias errors in the estimates of the 
peak amplitudes. For the second resonance, for example, the maximum 
peak level at 956 Hz is 31,1 dB and the Coherence is 0,4 (see the cursor 
readout in the upper and lower right corners of the plot). Increasing the 
resolution by performing a so-called zoom analysis should remedy this 
leakage problem. The result of a zoom analysis with a frequency span of 
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Fig. 20. Magnitude of Frequency Response Function estimate H1(f) and 
Coherence Function from a zoom measurement (Frequency span 
of 200 Hz) on the same system as in Fig.19. Random noise 
excitation. 

200 Hz around the second resonance is shown in Fig.20. The Coherence 
in this analysis is very close to one around the resonance peak indicat- 
ing elimination of leakage effects and also proving that the low Coher- 
ence in the baseband measurement was due to leakage and not 
extraneous noise or non-linearities. 

The exact resonance frequency is 953,5 Hz and the true level is 42,2 dB 
(see cursor read out in Fig.20). The peak level in the baseband analysis 
was 31,1 dB, indicating severe leakage in the baseband analysis. 

Let us instead of H1(f) use H2(f) as the baseband estimate of the driving 
point accelerance. The result is shown in Fig.21, which is based on the 
same measurement as the one used for calculating H1(f) in Fig.19. The 
peak amplitude in H2(f)  for the second resonance is 39,0 dB (at 
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Fig. 21.  Magnitude of Frequency Response Function estimate H2(f) and 
input Autospectrum for the same measurement as in Fig. 19. 

956 Hz, see cursor read-out) i.e. there is only a bias error of 3,2 dB in 
H2(f)   compared to an error of 11,1 dB in H1(f) . 

H2(f) is thus much less sensitive to the leakage effect at the resonances 
and a better estimate of peak amplitudes can be found using H2(f)  
instead of H1(f)  if the resolution is too coarse. If the resolution is 
high enough and the Coherence is one, then H1(f) = H2(f). 

A mathematical formulation and proof of this is found in Ref. [6]. Only an 
intuitive explanation shall be given here. Suppose that the input spec- 
trum is flat and therefore has no bias error (this is not true for the 
example in Fig.19 and 21). The leakage (due to the convolution of the 
spectrum with the Fourier Transform of the time weighting function, as 
shown in Fig.10) will cause the levels in GBB(f) and GAB(f)  to be 
underestimated around the resonances. This is illustrated in Fig.22. The 
bias error in GAB(f) will give the bias error in H1(f) as 
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Fig. 22. Bias errors in GBB(f) and | GAB(f) due to leakage. GAA(f) is as 
sumed flat 

GAB(f) H1(f) =                and GAA(f) is assumed flat. 
GAA(f) 

The bias errors in GBB(f) and GBA(f)  ( = GAB(f)  ) tend to be of the 
same order of magnitude and therefore tend to cancel in the H2(f) 

GBB(f) 
estimate, H2(f)  = 

GBA(f) 

It is shown in Ref. [6] that also in the situation where the input spectrum 
drops at the resonance frequency of the system, H2(f) is less suscepti- 
ble to bias errors than H1(f). 

Such situations very often occur in practice when a shaker via a force 
transducer is used for excitation of a mechanical system, as mentioned 
earlier. For example, this is the case for the first and second resonances 
in Figs.19 and 21. The force spectrum is shown in the lower graph of 
Fig.21. 

Furthermore, it could also give rise to problems with background noise 
for the input force signal at the resonance frequencies (see Section 4.3) 
and could therefore be another reason for using H2(f) as the estimate of 
the Frequency Response Function at the resonances. 

In this discussion it has been assumed that there is no extraneous noise 
at the output. If there are other uncorrelated inputs to the system which 
excite the resonances in question as well, H2(f) might overestimate the 
Frequency Response Function. 

As argued in section 3 the Coherence Function will only detect leakage 
when the signals are random in nature. If the signal repeats itself for 
each data record, the Coherence will be one (assuming no extraneous 
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noise in the measurement) and H1(f) = H2(f), according to equation 
(4.8). This can be the situation when an impact hammer is used for 
excitation of a mechanical structure (see Section 5). 

4.7. Summary 
From a Dual Channel FFT measurement two different estimates of the 
complex Frequency Response Function can be calculated: 

H1(f)=
 GBA(f)   and  H2(f) = GBB(f) 

          GAA(f)                       GBA(f) 

To summarize, 

1. When there is extraneous noise at output, or several independent 
inputs to the system H1(f) should be used, 

2. When there is extraneous noise at input, H2(f) should be used. 

3. If there are problems with leakage at resonance peaks (resolution 
bias) H2(f) gives a better estimate than H1(f). 

In a practical measurement, different situations occur at different fre- 
quencies. In order to get an optimal Frequency Response Function 
estimate from one measurement, H1(f) should be used at some frequen- 
cies and H2(f) at other frequencies. 

Usually, H1(f) should be used for the notches, where output noise tend 
to dominate, and H2(f) at the peaks, where input noise or leakage tend 
to cause the problems. 

In situations with both input- and output-noise and when leakage does 
not cause any bias errors H1(f)  and H2(f)  can be used to give a 
lower and upper bound respectively, for the true | H(f) |. 

5. Excitation Techniques 
In most applications of system analysis or testing, where input-output 
relationships have to be measured, it is necessary to excite the system 
with a well controlled and measurable input. 

A number of different types of excitation signals are available for the 
analysis each having its own advantages and disadvantages. For struc- 
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Fig. 23. Different excitation techniques for structural analysis or testing 

tural testing for instance, it is possible to use either an impact hammer 
or a shaker as shown in Fig.23. If the shaker is selected there are a 
number of generator signals which can be used such as random, pseudo 
random, sine etc. The choice of the signal depends among other things 
upon the test application, non-linear behaviour of the system and time 
available for the analysis. In this section the most common types of 
excitation techniques will be described and discussed briefly in terms of 
advantages and disadvantages. The types described here will be 1) 
Random, 2) Pseudo Random, 3) Periodic Impulse, 4) Periodic Random, 5) 
Sine, 6) Impact. 

5.1. Random Noise Excitation 
A random signal such as shown in Fig.24 is a continuous type of signal 
which never repeats itself and whose amplitude can only be predicted in 
terms of statistical parameters. It is usually described in terms of its 
power spectral density (Autospectrum), its Autocorrelation Function 
(containing the same information as the Autospectrum) and the ampli- 
tude probability density. The Autocorrelation Function is related to the 
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Fig. 24. Random noise signal 

Autospectrum via a Fourier Transform and will be discussed in Section 
7. The amplitude probability density is defined as the probability of 
having amplitude values within a certain amplitude interval ∆x, divided 
by the size of that interval ∆x. This function gives a description of how 
on the average, the instantaneous amplitude of the signal is distributed 
as a function of amplitude level. It has however no information about the 
time history or frequency content. Often the random signals found in 
practice have a gaussian amplitude probability density distribution (see 
Ref. [4]). The random signal should preferably have a constant spectral 
density in the frequency range of interest i.e. the Autospectrum should 
be flat in this frequency range and the signal is called a band limited 
white noise signal. 

The main characterisitic of the random excitation signal is that the 
spectral estimates Âi(f) for each recorded data block will have random 
amplitude and random phase. At each frequency the system can thus be 
considered as being excited by different amplitude and phase in each 
data block analysis. Considering the effects of non-linearities as noise at 
the output (see Section 4.2), the H1(f) estimate will give the best linear 
fit to the system or the optimum Frequency Response Function minimiz- 
ing the effects of the non-linearity (also called the least squares esti- 
mate, see Ref. [4]). This is a very important advantage of random 
excitation. 

Another advantage of using random noise excitation is that it can be 
fairly easily shaped to fit the frequency range of interest by filtering and 
modulating the original broad band white noise signal. Thus the system 
is not excited by frequencies outside the analysis bandwidth, giving a 
better dynamic range in the analysis. Fig.25 gives an illustration for a 
baseband and a zoom measurement. 

The random signal being continuous does not fit the block length in the 
analysis. A smooth weighting function (such as the Hanning Weighting) 
therefore has to be applied which causes leakage in the spectral esti- 
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Fig. 25. Filtering of the random excitation signal giving better dynamic 
range in the analysis 

mates. This is exemplified in Fig.19 and is one of the disadvantages of 
the random noise excitation. The H2(f) estimate is less susceptible to 
effects of leakage (section 4.6, Fig.21) and could thus be used, or a zoom 
analysis would have to be performed (Fig.20). Zooming will, however, 
increase the analysis time and may therefore not be preferable. It should 
also be kept in mind that for structural testing (Fig.23) although the 
shaker is being driven by a signal, which has a flat spectral density in the 
frequency range of the analysis (Fig.25), the impedance mismatch 
between the structure and the shaker will cause the input force signal to 
drop at the resonance frequencies of the structure. This is however 
usually not a serious problem as H2(f), which is insensitive to extrane- 
ous noise at the input  (section 4.3), could be used instead (assuming no 
output noise). 

5.2. Pseudo-Random Excitation 
The pseudo-random signal is specially designed for the DFT analysis 
which works on blocks of data. It is made up of a segment of a 
"random" signal of length T which is repeated after every period of time 
T, see Fig.26. It is periodic and therefore has energy only at discrete 
frequencies f = k1/T, where T is the period length and k is an integer. 
The period length T is matched to the record length of the Analyzer, so 
the frequency components of the pseudo-random signals coincide with 
the computed frequency lines in the analyzer. One record length of the 
pseudo-random signal therefore contains all the information in the 
signal. Rectangular weighting should be used and there will be no 
leakage in the spectral estimates. This is probably the main advantage 
of using pseudo-random excitation. The signal is designed in such a way 
that each frequency component has the same amplitude in the frequency 
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Fig. 26. Example of a pseudo-random signal 

range of interest. The phase angle between the different components, 
however, will be random. The pseudo-random signal can therefore also 
be considered as a number of sinewaves, having the same amplitude in 
the analysis frequency range but a random phase, and where the time 
record in the analyzer contains an integer number of periods for each 
sinewave. 

The spectrum can be shaped in the same way as the random signal. This 
is shown in Fig.27. In the Brüel & Kjær Dual Channel Signal Analyzer 
Type 2032 or 2034 which is a 801 line analyzer, the pseudo-random 
signal contains 801 components (sinewaves) in the frequency span 
which 
is selected. 

As the signals involved are deterministic and periodic only a few aver- 
ages are needed in the analysis, assuming that there is no extraneous 
noise at the input or output. This can be an advantage specially for low 
frequency work and zoom analysis, compared to random noise excita- 
tion where some averaging always is needed in practice. The main 
advantages in using pseudo-random excitation are: no leakage in the 

Fig. 27. Spectrum of pseudo-random signal for baseband analysis and 
for zoom analysis 
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analysis, the spectrum can be shaped to only excite frequencies in the 
range of interest and only a few averages are needed. 

For a linear system the Frequency Response Function will be calculated 
at the discrete frequencies fk = k ∆ f = k1/T without any bias error, as 
there is no leakage in the analysis. This is illustrated in Fig.28 where the 
same structure as used in Figs.19, 20 and 21 is analysed using pseudo- 
random noise. The Frequency Response Function estimate at 952 Hz is 
38,8 dB (compared to 30,6 dB in   H1(f)   with random noise and the 
same resolution of ∆f = 4 Hz). Notice that the coherence is one as there 
is no leakage and no extraneous noise in the measurement. Zooming in 
on the resonance (Fig.29) using random noise and a resolution of ∆f 
= 0,25 Hz (no effects from leakage) shows that the true optimum linear 
estimate of the Frequency Response Function is 38,7 dB at 952,00 Hz as 
computed in the baseband pseudo-random test (within 0.1 dB). This is 
advantageous when the data are used for analysis and modelling of 
linear systems. The effect of sampling the Frequency Response Function 
 

Fig. 28. Magnitude of Frequency Response Function estimate H1(f) and 
Coherence Function from a baseband measurement using pseudo- 
random excitation. Same structure as used in Fig. 19, 20 and 21 
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Fig. 29 Zoom analysis around the second resonance (same measure- 
ment as in Fig.20). Notice that the magnitude of the Frequency 
Response Function estimate at 952 Hz is the same as the esti- 
mate at 952 Hz from the baseband measurement using pseudo- 
random excitation (Fig.28) within 0,1 dB 

at discrete frequencies is often called the picket fence effect. (see for 
inst. Ref. [1] and Ref. [2]). However it is very important to keep in mind 
that this only works for linear systems. As the excitation signal is 
periodic, non-linearities in the system will also be excited periodically 
and their effects will therefore not be averaged out as was the case for 
random excitation. An optimum linear estimate of a non-linear system is 
therefore not found. 

Considerable differences in the Frequency Response Function estimates 
can thus be found between a random test and a pseudo-random test on 
a non-linear system. 
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5.3. Periodic Impulse Excitation 
A short impulse repeated every T, where T is the record length in the 
Analyzer, is called a periodic impulse signal, and is shown in Fig.30. It 
has a line spectrum where the components coincide with the lines in the 
Analyzer and can therefore be considered as a special case of a 
pseudo-random signal. The impulse is so short (one sample time ∆t) 
that the spectrum is nearly flat in the baseband frequency range, see 
Fig.30. Rectangular Weighting can be used and leakage in the analysis is 
avoided as for the pseudo-random signal. Another advantage of the 
periodic impulse technique is that gating of direct signal and the reflect- 
ed signals can be performed in some applications, for example, in 
acoustics. The gating is done by use of a transient time weighting 
function whose delay and length in the data record is defined by the 
user. For broadband analysis the delay time between direct sound and 
reflected sound however, should be relatively short as the record length 
T becomes short. In the Brüel & Kjær Analyzer Type 2032 or 2034 the 
record length T is ≈ 31 ms for a 25,6 kHz frequency span, so that the 
delay between direct sound and reflections should be less than ≈ 20 ms. 

The disadvantages however, are as follows: No linear approximation of a 
non-linear system is obtained for the same reasons as found in the 
discussion of pseudo-random noise. The signal has a very high crest 
factor (ratio of peak to RMS level). The high peak level might give 
problems in exciting non-linearities in some kind of systems. Also 
weighting functions (transient in channel A and transient or exponential 
in channel B) might have to be applied in order to increase the signal to 

Fig. 30. Periodic Impulse excitation signal and its Autospectrum 
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noise ratio in the analysis. The periodic impulse signal should only be 
used in baseband analysis as the main energy in the signal always is 
concentrated at the low frequencies i.e the main lobe of the sin x 
                                                                                                                x 
shaped envelope curve shown as a dotted line in Fig.30. 

5.4. Periodic Random Excitation 
With the periodic random signal the advantages of the random test and 
the pseudo-random test are combined. As illustrated in Fig.31 it consists 
of a pseudo-random sequence (A) of length T which is repeated a 
couple of times followed by another sequence (B) of length T, which is 
independent of A repeated the same number of times. A third sequence 
(C) independent of the previous ones is now repeated and so on. As 
indicated in Fig.31 the first couple of periods of each sequence are used 
for the transient response of the system after the change of sequence 
i.e. change of phase and amplitude between all the sinewave compo- 
nents. The last sequence is then used for the analysis where the system 
is in a quasi stationary condition. 

Rectangular weighting should be used and there will be no leakage. In 
addition it will give the best linear approximation of the system, as the 
different pseudo-random sequences are independent of each other 
(changed randomly in phase and amplitude). 

Compared to pseudo-random testing the periodic-random testing will 
usually be slower since not all the blocks in the signals are analysed. 

Fig. 31. Periodic random excitation signal 
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5.5. Sine Testing 
Excitation with a sinewave has been the traditional input signal in system 
analysis for many years and is still widely used. For Frequency Response 
Function testing, the sinewave is either stepped or swept through the 
frequency range of interest, while the output signal is being recorded 
and the input signal is controlled via a compressor loop to maintain a 
constant level. Some of the advantages of this type of testing is that the 
input signal level is well controlled, that the signal to noise ratio is good 
and that the crest factor of the signal is low. Also, a sine wave is the 
best input signal when non linearities have to be studied. For mechanical 
systems having non-linear spring elements swept sine testing can give 
very useful information about the behaviour of these "stiffness" ele- 
ments. Examples of this kind are found in Ref. [9]. Study of harmonic 
distortion will also require a sinusoidal excitation signal. 

The main disadvantage of the traditional swept sine test is that it is slow 
compared to the other methods where all the frequencies are excited 
and analysed simultaneously. 

A special kind of swept sine testing is the so-called TDS. This technique 
is outside the scope of this article, but a discussion of TDS theory and 
its application is found in Technical Review Nos.1 & 2, 1983. 

5.6. Impact Excitation 
A very popular and convenient excitation technique for mechanical 
structures is impact excitation using an impact hammer. 

Fig.32 shows the Brüel & Kjær Impact Hammer Type 8202, with a force 
transducer on which an impact tip is mounted. When the structure is 
excited by the hammer, energy is transferred to the structure in a very 
short period of time, giving a typical Input force signal as shown in 
Fig.32. The shape of this force signal depends upon the type of the 
hammer tip, mass of the hammer and the dynamic characteristics of the 
structure under investigation. As the frequency bandwidth of the force 
spectrum is determined by the length of the signal, these characteristics 
will determine the cut off frequency of the excitation signal. The more 
stiff the hammer tip and the structure is, the shorter will the signal be, 
and the wider will the frequency span be. Extra mass on the hammer, 
shown as dotted lines in Fig.32, will widen the force signal and therefore 
lower the cut off frequency. This is illustrated in Fig.33, where curves for 
steel-, plastic- and rubber-tip are shown with and without the extra mass 
on the hammer. The structure used was a stiff plate. 
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Fig. 32. Impact Hammer (Brüel & Kjær Type 8202) and a typical input 
force pulse 

It should be kept in mind that the force measured by the force transduc- 
er is not the true force which is input to the structure. Denoting the 
effective mass of the tip as m and the effective mass of the hammer 
(minus tip) as M the true force F will be given by F = F M + m where F                                                                                                 m 
is the measured force. The effective masses take into account the 
material characteristics of the tip and the hammer. Therefore the impact 
hammer should always be calibrated using a proper calibration mass 
before the measurements are performed. This is described in Ref. [8]. 

The advantages of using impact testing are: a) It is very fast, only a few 
averages are needed; b) No elaborate fixturing as for shaker excitation 
is required; c) Easy to use in the field. However, the force signal has a 
high crest factor which can make this technique non suitable for non- 
linear systems. The limited control of excitation bandwidth is also a 
disadvantage. 

Fig. 33. Typical Autospectra for Impact Hammer force pulses when steel, 
plastic-, and rubbertip are used, with and without extra mass 
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Fig. 34. Analysis of a mechanical structure using Impact excitation 
a) Time ch.A and Time ch.B 
b) Autospectrum ch.A and Autospectrum ch.B 
c) Frequency Response Function H1(f) (magnitude) and Coher- 

ence Function 

A practical application of the impact hammer technique on a mechanical 
structure is shown in Fig.34. A transient weighting function is applied to 
the force signal in ch.A, which will increase the signal to noise ratio and 
exclude other force signals which are not fed into the structure. Expo- 
nential weighting is applied to the response signal (acceleration) in 
channel B in order to avoid leakage effects due to truncation of the 
signal at the end of the record and in order to increase the signal to 
noise ratio in the analysis. This exponential weighting will introduce 
leakage but as it will have the same effect as additional damping in the 
system, correction can be made subsequently. If the time constant for 
the exponential weighting is τw the corresponding decay rate is 
σw = 1/τw. The measured decay rate σ thus has to be corrected in or- 
der to determine the true decay rate of the system σ. 
                   

σ = σ + σw  ⇒  σ = σ - σw. 
If the damping ratio (ratio of critical damping) 
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ζ  =      σ       is used, the relation is ζ = ζ - ζw = ζ  -  
  1    , 

          2πf0                                                            2πf0τw 
where f0 is the resonance frequency in question. This works very well as 
long as the damping of the system is not too small compared to the 
artificial damping caused by the weighting function. 

In Fig.34.(b) the input force spectrum and the response spectrum are 
shown. A steel tip was used on the hammer and it can be seen that the 
force energy spectral density has dropped only 8 dB at 3,1 kHz com- 
pared to the levels at low frequencies. The magnitude of the estimated 
Frequency Response Function   H1(f)   and the Coherence γ2(f) are 
shown in Fig.34.c). Notice that the Coherence is one at all the resonance 
frequencies. The exponential weighting function used on the response 
signal will introduce leakage in the analysis, but since the signals repeat 
themselves the leakage terms Bileakage(f) will be the same for each 
analysis (see Section 3, Fig.11). The leakage is therefore not detected by 
the Coherence Function. 

The most important advantages and disadvantages of the different 
excitation techniques discussed in this section are summarized in Table 
1. 

 
 

Leakage 
in 

analysis 

Best linear 
fit of 

non-linear 
system 

Crest 
factor 

Signal 
to 

noise 
ratio 

Control of 
excitation 
bandwidth 

Speed 

Random Yes Yes Medium Fair Good Fast 
Pseudo- 
random 

No No Medium Good Good Very 
fast 

Periodic 
Impulse 

Depends on 
weighting 
functions 

No High Poor Limited 
(no zoom) 

Very 
Fast 

Periodic 
Random 

No Yes Medium Good Good Slower 
than 

random 
Sine Can be 

avoided 
No Low Good Good Slow 

Impact Depends on 
weighting 
functions 

No High Poor Limited 
(no zoom) 

Very 
Fast 

 
Table 1. 
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APPENDIX A 

Optimum Estimate of H(f) for the situation where there is noise in the 
input measurement (Section 4.3) 
In ref.[4] it is shown that H1(f) gives the optimum estimate of H(f) in the 
situation with output noise (Section 4.2, Fig.15). The optimum estimate is 
defined as that estimate which minimizes the extraneous noise GNN(f). 

From this it can easily be proved that H2(f) is the optimum estimate of 
the Frequency Response Function in the situation where the measured 
input signal is contaminated with extraneous uncorrelated noise (section 
4.3, Fig.16). 

Viewing the system in the opposite i.e. backward direction and defining 
an inverse Frequency Response Function Hinv.(f) given by 

Hinv. (f)
 =   1     we have the situation shown in Fig.A.1. H(f) 

Fig. A.1. Situation with noise in the input measurement (Section 4.3, 
Fig.16). The system is viewed in the opposite i.e. backward 
direction and the inverse Frequency Response Function Hinv.(f) 
is defined by Hinv.(f) = 1 /H(f) 

The relations are: 

and 

U(f) = Hinv.(f) B(f)                          (A.1) 

A(f) = Hinv.(f) · B(f) + M(f)                                  (A.2) 
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a(t) is considered as the measured output signal and b(t) is considered 
as the measured input signal. This situation corresponds to the situation 
where the output signal is contaminated with extraneous uncorrelated 
noise (Section 4.2, Fig.15). 

The estimate of Hinv.(f) which minimizes the Autospectrum GMM(f) of the 
noise will thus be given by H1(f) for the inverse situation in Fig.A.1 i.e. 

Hinv.(f) =
 GBA(f)                                                    (A.3)               GBB(f) 

The optimum estimate of the Frequency Response Function H(f) in the 
situation where the measured input signal is contaminated with extrane- 
ous noise (Fig.16, section 4.3) is therefore given by: 

H(f) =     1     = GBB(f) ≡   H2(f)                                  (A.4)           Hinv.(f)    GAB(f) 
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